Data collection	
Rigaku AFC-7R diffractom-	4710 reflections with
eter	I > 0
ω -2 θ scans	$R_{\rm int} = 0.016$
Absorption correction:	$\theta_{\rm max} = 30^{\circ}$
ψ scan (North <i>et al.</i> ,	$h = 0 \rightarrow 13$
1968)	$k = -16 \rightarrow 16$
$T_{\rm min} = 0.529, T_{\rm max} = 0.860$	$l = -10 \rightarrow 10$
5276 measured reflections	3 standard reflections
4999 independent reflections	every 150 reflectio

Refinement

•	
Refinement on F^2	$\Delta \rho_{\rm max} = 1.52 \ {\rm e} \ {\rm \AA}^{-3}$
R(F) = 0.031	$\Delta ho_{\rm min}$ = -1.33 e Å ⁻³
$wR(F^2) = 0.089$	Extinction correction:
S = 1.551	Zachariasen (1967), type
4999 reflections	2, Gaussian isotropic
227 parameters	Extinction coefficient:
H atoms not refined	0.042 (3)
$w = 1/[\sigma^2(F_o^2)]$	Scattering factors from
$+ 0.0025(F_o^2)^2$]	International Tables for
$(\Delta/\sigma)_{\rm max} = 0.001$	Crystallography (Vol. C)

every 150 reflections

intensity decay: 2.1%

Table 1. Selected geometric parameters (Å, °)

Sn1—O1 Sn1—O2	2.099 (2) 2.102 (2)	Sn1—N1 Sn1—N2	2.424 (2) 2.419 (2)
O_1 —Sn1—O2	97,43 (7)	O2—Sn1—N1	79.19 (6)
O1 - Sn1 - N1	73.13 (6)	O2-Sn1-N2	72.90 (7)
01—Sn1—N2	79.13 (6)	N1	137.32 (6)

The diffractometer was equipped with a Rigaku lowtemperature device. H atoms were placed in calculated positions and were not refined.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1995). Program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992). Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

This work was partly supported by the Joint Studies Program (1998) of the Institute for Molecular Science.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1007). Services for accessing these data are described at the back of the journal.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.

Doskey, M. A. & Curran, C. (1969). Inorg. Chim. Acta, 3, 169-173.

- Ewings, P. F. R., Harrison, P. G. & Fenton, D. E. (1975). J. Chem. Soc. Dalton Trans. pp. 821-826.
- Ewings, P. F. R., Harrison, P. G. & King, T. J. (1975). J. Chem. Soc. Dalton Trans. pp. 1455-1458.
- Ewings, P. F. R., Harrison, P. G. & King, T. J. (1976). J. Chem. Soc. Dalton Trans. pp. 1399-1403.

Hoy, R. C. & Morriss, R. H. (1967). Acta Cryst. 22, 476-482.

© 1999 International Union of Crystallography Printed in Great Britain - all rights reserved

- Kamenar, B., Prout, C. K. & Wright, J. D. (1966). J. Chem. Soc. A, pp. 661-664.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1995). TEXSAN. Crystal Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Morrison, J. S. & Haendler, H. M. (1967). J. Inorg. Nucl. Chem. 29, 393-400.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Palenik, G. J. (1964). Acta Cryst. 17, 696-700.
- Phillips, J. P. (1956). Chem. Rev. 51, 271-297.
- Shields, K. G., Seccombe, R. C. & Kennard, C. H. L. (1973). J. Chem. Soc. Dalton Trans. pp. 741-743.
- Stevens, H. M. (1959). Anal. Chim. Acta, 20, 389-396.
- Tang, C. W. & VanSlyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.
- Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1999). C55, 878-880

$[CuCl(C_{12}H_9N_2O_5)(C_{12}H_{10}N_2O_5)(H_2O)]$

Monica Ruíz,^a Rosa Ortiz,^a Lourdes Perelló^a and ALFONSO CASTIÑEIRAS^b

^aUniversidad de Valencia, Departamento de Química Inorgánica, Facultad de Farmcia, Avenida Vicente Andrés Estellés s/n, E-46100 Burjassot (Valencia), Spain, and ^bUniversidad de Santiago de Compostela, Departamento de Química Inorgánica, Facultad de Farmacia, Campus Universitario Sur, E-15706 Santiago de Compostela, Spain. E-mail: giac01@usc.es

(Received 15 December 1998; accepted 21 January 1999)

Abstract

In the title compound, aquachloro(1-ethyl-1,4-dihydro-4-oxo-1,3-dioxolo[4,5-g]cinnoline-3-carboxylato-O³,O⁴)-(1-ethyl-1,4-dihydro-4-oxo-1,3-dioxolo[4,5-g]cinnoline-3carboxylic acid- O^3 , O^4) copper(II), the Cu^{II} ion adopts a tetragonally distorted octahedral geometry. In the equatorial plane, the Cu^{II} ion is coordinated to two O atoms (Oketo and Ocarboxylate) of one cinoxacinate ligand, and to two O atoms (O_{keto} and O_{carboxylic}) of one cinoxacin molecule. The apical positions are occupied by one O atom from the water molecule and one Clion, resulting in a CuClO₅ chromophore.

Comment

Cinoxacin, HCx (1-ethyl-1,4-dihydro-4-oxo-1,3-dioxolo-[4,5-g]cinnoline-3-carboxylic acid; Cx is the deprotonated form, 1-ethyl-1,4-dihydro-4-oxo-1,3-dioxolo[4,5-g]cinnoline-3-carboxylate), is a quinolone antimicrobial agent which is active, both in vitro (Giamarellon & Jackson, 1975) and in vivo (Grenwood & O'Grady, 1978), against a large variety of gram-negative bacteria. In the last few years, we have studied the crystal structures of several complexes of cinoxacin with cobalt, nickel, zinc and cadmium ions (Chulvi et al., 1991; Ruíz et al., 1993, 1994, 1998). Likewise, the structural properties of two complexes of cinoxacin have been reported (Ruíz et al., 1995, 1997) showing squareplanar and distorted square-pyramidal environments. The present investigation was aimed at determining the crystal structure of a new copper-cinoxacin complex, $[Cu(Cx)(HCx)(H_2O)Cl]$, (I), and comparing the results with data from known Cu¹¹ complexes. This compound is the first reported in which the ligand is present in both its neutral and its anionic forms.

The structure consists of neutral monomeric [Cu(Cx)- $(HCx)(H_2O)CI$] units linked by hydrogen-bond inter-

actions. The complex exhibits a six-coordinate motif with a tetragonally distorted octahedral environment around the metal centre. In the equatorial plane, the Cu^{II} atom is coordinated to two O atoms (O_{keto} and O_{carboxvlate}) of one cinoxacinate ligand, Cx, and to two O atoms (Oketo and Ocarboxylic) of one cinoxacin molecule, HCx. The apical positions are occupied by one O atom from the water molecule (O10) and the Cl⁻ ion, resulting in a CuClO₅ chromophore. The Cu-Cl [2.6043 (10)] and Cu-O10 [2.588 (3) Å] distances are longer than the equatorial Cu-O distances, thus confirming the tetragonal distortion. The Cu-O_{keto} distances [mean 1.9354 (17) Å] are similar and are slightly shorter than the Cu-Ocarboxylic [2.0081 (18)] and Cu-O_{carboxylate} [1.9880(18) Å] distances. The Cu^{ll} ion deviates from the mean least-squares basal plane formed by these O atoms, by 0.174(1) Å in the direction of the coordinated Cl⁻ ion.

The Cu— O_{keto} equatorial distances are similar to those observed in the square-pyramidal compound [Cu(Cx)₂(H₂O)]·H₂O reported recently; whereas the Cu— $O_{carboxylic}$ bond lengths are shorter in (I), the Cu— 010 axial bond length is longer than that observed for the square-pyramidal compound [Cu—O1W 2.226 (5) Å; Ruíz *et al.*, 1997]. Also, complex (I) presents equatorial bond lengths longer than those reported for the squareplanar compound [Cu(Cx)₂]·2H₂O (Ruíz *et al.*, 1995). The O—Cu—O and Cl—Cu—O angles in (I) vary from 80.30 (8) to 100.53 (7)°; these values differ from those expected for a regular octahedron.

Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

The geometry of the hydrogen bonds is given in Table 2. The hydrogen bonds involve atoms O2_{carboxylic}, O22_{carboxylate}, O21_{carboxylate}, O10 of the coordinated water molecule and N22 of the pyrimidine group. The H atom in the carboxylic acid group is hydrogen-bonded to the carboxylate O atoms.

Experimental

Crystals of (I) were prepared in warm methanol (333-343 K) by mixing solutions containing cinoxacin (0.5 mmol, 0.13 g) and CuCl₂ (1 mmol, 0.17 g); the final volume was 100 ml. A green-yellow microcrystalline compound was obtained after a few days, which was separated by filtration. Slow evaporation of the resulting solution at room temperature over the period of a year yielded yellow crystals suitable for single-crystal diffraction work.

Crystal data

 $[CuCl(C_{12}H_9N_2O_5)(C_{12}H_{10}-$ Cu $K\alpha$ radiation $\lambda = 1.54184 \text{ Å}$ $N_2O_5)(H_2O)$] $M_r = 640.44$ Triclinic reflections ΡĪ $\theta = 18.98 - 42.39^{\circ}$ a = 8.8712 (18) Å $\mu = 2.863 \text{ mm}^{-1}$ b = 10.2642 (12) ÅT = 293 (2) Kc = 14.4412(9) Å Prism $\alpha = 98.780(5)^{\circ}$ $\beta = 92.483 (9)^{\circ}$ Yellow $\gamma = 104.804 (14)^{\circ}$ V = 1251.7 (3) Å³ Z = 2 $D_x = 1.699 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Enraf-Nonius CAD-4 diffractometer ω scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\rm min} = 0.619, \ T_{\rm max} = 0.751$ 5436 measured reflections 5089 independent reflections 4011 reflections with

$I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.120$ S = 1.0805089 reflections 455 parameters All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0682P)^2]$ + 0.4087P1 where $P = (F_o^2 + 2F_c^2)/3$

Cell parameters from 25 $0.25 \times 0.25 \times 0.10$ mm

$R_{int} = 0.027$ $\theta_{\rm max} = 74.22^{\circ}$ $h = 0 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -18 \rightarrow 18$ 3 standard reflections frequency: 120 min intensity decay: none

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.432 \ {\rm e} \ {\rm \AA}^{-3}$

Extinction correction:

Extinction coefficient:

Scattering factors from

1997)

0.0025(3)

 $\Delta \rho_{\rm min}$ = -0.571 e Å⁻³

SHELXL97 (Sheldrick,

International Tables for

Crystallography (Vol. C)

Table 1. Selected geometric parameters (Å, °)

Cu1-03	1.9323 (17)	Cu1-01	2.0081 (18)
Cu1	1.9384 (17)	Cu1010	2.588 (3)
Cu1—O21	1.9880 (18)	Cu1—C11	2.6043 (10)
O3—Cu1—O23	177.71 (9)	O21-Cu1-O10	80.30 (8)
O3—Cu1—O21	87.37 (7)	01-Cu1-010	82.04 (8)
O23—Cu1—O21	92.30(7)	O3-Cu1-Cl1	90.98 (7)
03—Cu1—O1	90.95 (7)	023-Cu1-Cl1	91.31 (7)
023-Cu1-01	88.68 (7)	O21-Cu1-Cl1	97.23 (6)
021-Cu1-01	162.19 (9)	01-Cu1-Cl1	100.53 (7)
O3-Cu1-010	91.96 (9)	010-Cu1-Cl1	176.06 (6)
O23-Cu1-O10	85.75 (8)		

Table 2. Hydrogen-bonding geometry (Å, °)

$D - H \cdot \cdot \cdot A$	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdots A$	$D = \mathbf{H} \cdots \mathbf{A}$
O2—H20···O22 ⁱ	1.11 (6)	1.33 (6)	2.445 (2)	174 (6)
O10—H101···O22 ⁱⁱ	0.76 (4)	2.21 (4)	2.916(3)	155 (4)
O10—H101· · · N22 ⁱⁱ	0.76 (4)	2.67 (4)	3.308 (3)	142 (4)
O10—H102· · · O23 ⁱⁱⁱ	0.81 (4)	2.32 (4)	3.087 (3)	158 (4)

Symmetry codes: (i) x - 1, y, z; (ii) 1 - x, -y, -z; (iii) -x, -y, -z.

All H atoms were located from difference maps and refined isotropically (C—H = 0.76–1.11 Å and $U_{iso} = 0.032-0.14 \text{ Å}^2$). Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994).

Cell refinement: CAD-4 EXPRESS. Data reduction: HEL-ENA (Spek, 1997). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ZORTEP (Zsolnai, 1997). Software used to prepare material for publication: SHELXL97.

We greatly appreciate financial support from the CICYT (Project PM-97-0105).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1017). Services for accessing these data are described at the back of the journal.

References

- Chulvi, C., Muñoz, M. C., Perelló, L., Ortiz, R., Arriortua, M. I., Via, J., Urtiaga, K., Amigó, J. M. & Ochando, L. E. (1991). J. Inorg. Biochem. 42, 133-138.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
- Giamarellon, H. & Jackson, G. G. (1975). Antimicrob. Agents Chemother. 7, 688-692.
- Grenwood, D. & O'Grady, F. (1978). Antimicrob. Agents Chemother. 12, 678-681.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Ruíz, M., Ortiz, R., Perelló, L., Castiñeiras, A., Quirós, M. (1993). Inorg. Chim. Acta, 211, 133-139.
- Ruíz, M., Ortiz, R., Perelló, L., García-Granda, S. & Díaz, M. R. (1994). Inorg. Chim. Acta, 217, 149-154.
- Ruíz, M., Ortiz, R., Perelló, L., Latorre, J. & Server-Carrió, J. (1997). J. Inorg. Biochem. 65, 87-96.
- Ruíz, M., Perelló, L., Ortiz, R., Castiñeiras, A., Maichle-Mössmer, C. & Cantón, E. (1995). J. Inorg. Biochem. 59, 801-810.
- Ruíz, M., Perelló, L., Server-Carrió, J., Ortiz, R., García-Granda, S., Díaz, M. R. & Cantón, E. (1998). J. Inorg. Biochem. 69, 231-239.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473. Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of
- Crystal Structures. University of Göttingen, Germany. Spek, A. L. (1997). HELENA. Program for the Reduction of CAD-4
- Data. University of Utrecht, The Netherlands.
- Zsolnai, L. (1997). ZORTEP. Molecular Graphics Program. University of Heidelberg, Germany.